Exercise 70

Find the value of the number a such that the families of curves $y=(x+c)^{-1}$ and $y=a(x+k)^{1 / 3}$ are orthogonal trajectories.

Solution

The points of intersection are found by solving the system of equations for x and y.

$$
\left\{\begin{array}{l}
y=(x+c)^{-1} \\
y=a(x+k)^{1 / 3}
\end{array}\right.
$$

Subtract the respective sides of these equations.

$$
\begin{aligned}
& 0=(x+c)^{-1}-a(x+k)^{1 / 3} \\
& -(x+c)^{-1}=-a(x+k)^{1 / 3}
\end{aligned}
$$

Square both sides.

$$
(x+c)^{-2}=a^{2}(x+k)^{2 / 3}
$$

Differentiate both sides of the given equations with respect to x.

$$
\begin{array}{rr}
\frac{d}{d x}(y)=\frac{d}{d x}\left[(x+c)^{-1}\right] & \frac{d}{d x}(y)=\frac{d}{d x}\left[a(x+k)^{1 / 3}\right] \\
\frac{d y}{d x}=-(x+c)^{-2} & \frac{d y}{d x}=\frac{a}{3}(x+k)^{-2 / 3}
\end{array}
$$

At any point of intersection $(x+c)^{-2}=a^{2}(x+k)^{2 / 3}$, so the slopes of the tangent lines are as follows.

$$
\frac{d y}{d x}=-a^{2}(x+k)^{2 / 3} \quad \frac{d y}{d x}=\frac{a}{3(x+k)^{2 / 3}}
$$

In order for the families of curves, $y=(x+c)^{-1}$ and $y=a(x+k)^{1 / 3}$, to be orthogonal trajectories, the slopes have to be negative reciprocals.

$$
\begin{aligned}
\frac{1}{a^{2}(x+k)^{2 / 3}} & =\frac{a}{3(x+k)^{2 / 3}} \\
\frac{1}{a^{2}} & =\frac{a}{3} \\
3 & =a^{3} \\
a & =\sqrt[3]{3}
\end{aligned}
$$

Observe that when $a=\sqrt[3]{3}$ the tangent lines at all points of intersection are orthogonal.

